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Molecular forms are considered with vertices that have

integral coordinates (the indices) with respect to a

symmetry-adapted basis and which are left invariant by a

point group of crystallographic scale-rotations (represented in

this basis by invertible integral matrices). The composite form

enclosing the chaperonin complex GroEL±GroES±(ADP)7 is

derived and decomposed into heptagrammal forms. These are

generalizations of the two-dimensional forms based on

sevenfold star polygons. In the chaperonin complex, nine

such heptagrammal molecular forms are found: three for each

ring (trans and cis) of GroEL and three for GroES. These

forms correspond to a splitting of the monomer into adjacent

segments. The change in the folding of the chains in the cis ring

of GroEL arising from binding to GroES leaves the chain

segmentation invariant.
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1. Aim of the investigation

The sevenfold symmetry of the chaperonin GroEL and of its

co-chaperonin GroES has been well known since the

pioneering electron-microscopic investigation of Saibil &

Wood (1993), who also showed that the double ring of the

GroEL multimer is `horizontally sliced', as pointed out by one

of the referees.

The monomers of the two rings of GroEL and of GroES

de®ne an asymmetric unit of the point group of the complex,

so that the folding of these monomers appears to be in-

dependent of any symmetry.

The aim of the present work is to show that this lack of

symmetry is only apparent and is a consequence of the

condition for the transformations to be Euclidean. It is taken

for granted that for an Euclidean object, such as the geo-

metrical structure of a molecule, only Euclidean transforma-

tions are meaningful and thus allowed. In fact, in addition to

the sevenfold rotations, the molecular structure of GroEL±

GroES also involves heptagrammal scalings. Therefore, the

normal characterization above is incomplete because it does

not consider crystallographic scale-rotations as possible

transformations for molecules. In order to recognize the

existence of this type of symmetry, a crystallography is

required which includes point groups of in®nite order (Janner,

2001a). This extension implies mathematical methods which

are generally not familiar to crystallographers and to bio-

chemists. In the present case, geometry helps one to grasp the

new structural relations because the scale-rotations involved

appear in a two-dimensional projection as star polygons that

can be drawn by straight lines connecting the vertices of a

regular polygon. In three dimensions, planes through these

star polygons delimiting the molecule are considered. The

situation then becomes analogous to that of crystal-growth

forms obeying the Law of Rational Indices, which allows the
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assignment of a set of rational integers to the crystal facets. In

the biomacromolecular case, the rational indices are the

coordinates of the vertices of the molecular form expressed

with respect to a symmetry-adapted basis. It can then be

recognized that the external envelopes are related to the

central channels by invertible integral scaling transformations.

In the GroEL±GroES complex, a similar scaling relation

connects the envelope of GroEL to that of GroES. Moreover,

the horizontal slicing mentioned above, normally associated

with domains, appears to correspond to a decomposition of

the molecular form of the whole into elementary forms,

according to a partition of the monomers into adjacent

segments. These elementary forms have symmetry properties

that the domains after splitting do not possess. All this is

presented here in part I.

2. Introduction

The GroEL chaperonin is a double-ring tetradecamer which

assists protein folding. It binds to ATP molecules (or to ADP)

and forms a complex with the heptameric co-chaperonin

GroES (Branden & Tooze, 1999). The structures of the un-

liganded GroEL and GroES and of GroEL complexed with

ATPS and with GroES±(ADP)7 have been determined in

recent years (Boisvert et al., 1996; Braig et al., 1994; Hunt et al.,

1996; Xu et al., 1997). The basic dynamic processes involved

have also been elucidated (Lorimer, 1997; Rye et al., 1997).

The sevenfold axial symmetry of both the unliganded and

complexed structures is a characteristic feature and the

question arises whether evidence for scalings compatible with

the heptagonal symmetry can be found in these biomacro-

molecules. Within the frame of a general crystallography

(Janner, 2001a), these are permitted crystallographic point-

group transformations of in®nite order. The same question has

been positively answered in two other heptagonal cases:

the nucleic acid poly-d(As4T)�poly-d(As4T) and the trans-

membrane pore protein �-haemolysin (Janner, 2002a).

Compatible scaling transformations are not restricted to the

cyclic point group of order seven and also occur in bio-

macromolecules with other axial symmetries. This has been

shown for C-DNA and Z-DNA in hexagonal conformations

(Janner, 2001b) and in the ®vefold case of the human serum

amyloid P component (Janner, 2002b). The easiest way to

recognize geometrically the presence of point groups of

in®nite order is to look for polygrammal symmetries, which

are scale-rotations that leave self-similar star polygons invar-

iant. Their crystallographic nature appears arithmetically as

groups of n-dimensional invertible integral matrices obtained

by expressing the transformations with respect to a suitable

basis.

The present investigation does not simply add new bio-

macromolecules to those indicated above, but is also intended

to study the effect of an interaction which modi®es the protein

folding while keeping the scale-rotational point-group

symmetry, as in the cis ring of GroEL when complexed with

GroES (Xu et al., 1997). It represents the very interesting case

of different foldings of the same protomer: one in the un-

liganded state and one in the complexed state. The binding of

ATP and of ADP, respectively, also modi®es the structure of

the chains, but this is a local effect involving more the

biochemistry at a molecular-engineering level than the archi-

tecture itself of the protein, which in this paper represents the

main concern.

The architecture of a building realises its functionality in

terms of geometrical forms whose symmetries and proportions

evoke harmony and style. In these terms, it could be said that

the architecture of GroEL±GroES has the folding of other

proteins as its functionality and is realised in a heptagonal

polygrammal style with molecular forms having scale-rotation

symmetries restricted by crystallographic laws. The crystallo-

graphic conditions enhance the harmonious interplay of the

various forms and possibly the stability of the structure. The

con®nement of a given sequence of amino acids within the

boundaries of a well de®ned molecular form normally requires

folding of the chain at some given residues. As will be shown in

part II (Janner, 2003a), these residues are mutually related by

scale-rotation point-group elements, some of which also occur

in the symmetry of the form.

This paper is based on structural data obtained from various

PDB ®les re¯ecting different situations. Global considerations

are required to allow a unifying point of view and the deri-

vation of symmetry-adapted coordinates. This is performed in

the next section. In x4 the molecular forms of GroEL are

derived and in x5 those of GroES. These forms share scale-

rotational symmetries, leading to an initial characterization of

the chaperonin architecture as a whole. The last section

concludes this ®rst part and introduces the next paper, where

some of the folding points of the tertiary structures, at the

boundaries of the molecular forms, are related by scale-

rotational point-group transformations. Mathematical aspects

of the two- and three-dimensional point groups involved are

outlined in an appendix. An initial analysis of the hidden

order in GroEL±GroES±(ADP)7 revealed by a molecular

crystallography approach appears elsewhere (Janner, 2003b).

3. Symmetry-adapted coordinates

The investigation of scale-rotation symmetries in GroEL±

GroES complexes is based on molecular crystallography, a

possibility within a general crystallography, as explained in a

previous paper (Janner, 2001a) and presented in a nutshell

in Janner (2003b). The fundamental requirement of this

crystallography is the existence of an n-dimensional faithful

integral representation of the point group of the system

considered. Lattice periodicity (clearly not realised in mole-

cules which are aperiodic) leads to such representations, but is

not required. In the molecular case (as for quasi-crystals) the

integral representation is spanned by n vectors of the three-

dimensional Euclidean space, which are linearly independent

over the rationals and thus also over the rational integers Z.

By integral linear combinations, these vectors generate a

Z-module M of rank n, which is left invariant by the point

group. The elements of the point group need not be Euclidean

transformations and scalings are allowed, leading to point



groups of in®nite order. The symmetry-adapted coordinates of

the atomic positions are those expressed with respect to the

basis of the Z-module, in the same way as lattice coordinates

are for the atoms of a crystal. For a given molecule, n basis

vectors and the origin left invariant by the point group must be

speci®ed.

The smallest value of n for a heptagonal planar molecule is

6, which is the value of '(7), where ' is the number-theoretical

Euler function. This follows from the requirement of linear

independence over Z. As GroEL and GroES are not planar,

the minimal value for n is '(7) + 1 = 7, with six vectors

a1, a2, . . . , a6 in a plane pointing from the centre to the vertices

of a regular heptagon and an additional non-coplanar vector

a7. A natural choice is a7 along the sevenfold axis in the

direction of the z axis and the other ak in the xy plane of a

Cartesian coordinate system. With respect to the orthonormal

basis e = {e1, e2, e3}, the symmetry-adapted basis adopted for

GroEL±GroES is

ak � a�cos k'; sin k'; 0�; ' � 2�

7
; k � 1; 2; . . . ; 6;

a7 � c�0; 0; 1�; �1�
where

a0 � ÿ�a1 � a2 � . . .� a6� �2�
is oriented along the x axis. The basis vectors {a1, a2, . . . , a7}

generate the Z-module M and form the (a, c) basis. In order to

verify the validity of this choice, the orientation of the various

molecules has to be speci®ed with respect to this basis, starting

from the structural data found in the three PDB ®les: 1grl for

the unliganded GroEL at 2.8 AÊ (Braig et al., 1994), 1der for

GroEL complexed with ATPS at 2.4 AÊ (Boisvert et al., 1996)

and 1aon for the GroEL±GroES±(ADP)7 complex at 3 AÊ (Xu

et al., 1997).

Disregarding local deviations, the trans rings of the un-

liganded GroEL, of GroEL±ATPS and of GroEL±GroES±

(ADP)7 have the same structure. In the ®rst two cases, the cis

and trans rings are dyadically related and have the same

molecular forms. Therefore, for GroEL, only two cases have to

be considered: the trans ring, for example of GroEL±ATPS,

and the cis ring of GroEL±GroES±(ADP)7.

For 1grl and 1der, the common origin is chosen at the

intersection between the sevenfold axis and a dyad. This point

was obtained by averaging the atomic positions of the residue

Ala356 in the 14 chains of 1der and in the seven upper chains

of 1grl. In the GroEL of 1aon there is no dyad relating the

trans ring to the cis ring, a consequence of the interaction with

GroES. However, the chains in the trans ring are only locally

different from the corresponding chains in 1grl and in 1der, as

has been pointed out previously (Boisvert et al., 1996; Braig et

al., 1994). This property is exploited for orienting the 1aon

data with respect to the two previous data sets by means of a

translation (shifting the origin) followed by a rotation by an
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Figure 1
The heptagrammal symmetry of the GroEL±GroES chaperonin is
demonstrated in a view along the sevenfold axis. The chains of GroES
are drawn as thicker lines than those of GroEL.

Figure 2
The trans ring and the cis ring of GroEL are shown in relation to GroES
in a view perpendicular to the heptagonal axis. Small relative shifts along
this axis allow the juxtaposed presentation. The thicker lines mark the
prismatic boundaries of this global composite form, whereas the thinner
horizontal lines correspond to planes which are Z-module-equivalent to
the bases of the various enveloping prisms. Note the metrical relations
between the local Z-modules: OA = AA0 0 = OB for Mt, ON = OO0 = NN0 =
BB0 for Mc and EE0 = 1

2BB0 for Ms.
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angle  around the z axis. The result is given here with lengths

in aÊngstroÈ ms.

1grl : translation �43:59;ÿ1:55; 0:0�
rotation  � 0

1der : translation �ÿ83:61;ÿ0:14; 26:7�
rotation  � �

7
� 25:71�

1aon : translation �ÿ78:84; 51:59;ÿ4:0�
rotation  � 11�: �3�

These transformations also ®x the positions of GroES, ATPS

and ADP molecules because they occur in one of the data sets

indicated above. In the GroEL±GroES complex the cis ring is

twisted by about 3� with respect to the trans ring, so that the

value  = 8� has been adopted for plotting the data of trans

GroEL and of GroES (if nothing else is explicitly indicated),

whereas for the GroEL±GroES complex as a whole the mean

value  = 9.5� has been adopted. The appropriate values for

the structural parameters a = |ak|, k = 1, . . . , 6 and c = |a7| of

the Z-modules underlying the structure of the GroEL±GroES

chaperonin complex follow from the prismatic heptagonal

shape enclosing the biomacromolecules shown in Figs. 1 and 2

in two projections: along the sevenfold axis and perpendicular

to it, respectively.

In Fig. 1 the heptagrammal scale-rotational symmetry of the

GroEL±GroES complex is pointed out. The envelope of

GroEL is formed by two regular heptagonal prisms. The

vertex labelled A of the ®rst prism is 70.3 AÊ from the centre O.

The vertex labelled B is at the same axial distance and

opposite A. It de®nes the second prism in x-reverse orienta-

tion. The envelope of GroES has vertices labelled E and F

related to the envelope of GroEL by scale-rotations of the

heptagrammal type {7/2}, as shown in Fig. 8 of the appendix.

Starting from the vertex B of GroEL (in the reverse orienta-

tion with respect to Fig. 8), by constructing a {7/2} star

heptagon (indicated by the dashed lines), the vertex E of the

envelope of GroES is obtained. This implies that the radial

distance OE is scaled with respect to OB by a factor

�E = ÿ1 + 2cos' ÿ 2cos2' = 0.6920 . . . The vertex F follows

from E by another {7/2} star heptagon, which characterizes in

axial projection the envelope of GroES.

The heptagrammal symmetry which connects the envelopes

of GroEL and GroES also relate their channels. The central

hole of GroEL [labelled by the vertex D shown in Fig. 5(a),

but not here] follows from the A envelope by the {7/3} star-

heptagon construction indicated in Fig. 8, so that the radial

distance OD is scaled with respect to OA by a factor

�D = ÿ1 + 2cos' = 0.24697 . . . Finally, the central channel of

GroES, with a vertex labelled G is also obtained by a {7/3} star

heptagon (indicated in dashed lines) from a vertex opposite F.

This implies that the radial distance OG is scaled with respect

to OA by a factor �G = �D�
2
E = 0.11823 . . . (see Figs. 1 and 6).

These scaling relations are expressible in terms of invertible

integral matrix transformations and ensure a common planar

form of the Z-modules, as discussed in the appendix.

The c parameters of the axial parts have a simple but hidden

relationship to the a value. The ®rst observation is that the

height of the prism enveloping the trans ring of GroEL is

equal to the radial heptagonal distance: OA = OB = AA00. The

same is true for the cis ring but for the scaled distance

ON = NN0 = �NOB with �N = 4cos' + 6cos2' = 1.1588 . . . , a

scaling factor leaving the planar Z-module structure invariant,

as shown in the appendix. Finally, the height of the enveloping

prism of GroES is simply half that of cis GroEL: EE0 = 1
2BB0. In

Fig. 2, trans GroEL, cis GroEL and GroES have been juxta-

posed. This implies shifts along the z axis of 3.0 AÊ and �1.0 AÊ

for the last two components, respectively, from the origin O

de®ned by (3). Despite the existence of a common Z-module

for these shifted parts of the whole chaperonin, it is conve-

nient to adopt the corresponding local Z-modules Mt, Mc, Ms,

respectively, for each component. The structural parameters

of their basis are given by

trans GroEL : Mt : at � a; ct � a=4

cis GroEL : Mc : ac � a; cc � �Na=4

GroES : Ms : as � �Ea; cs � �Na=6; �4�
with a = 70.3 AÊ , �N = 1.1588 . . . and �E = 0.6920 . . . The

choice of the rational factors 1/4 and 1/6 is based on properties

derived in the next two sections.

The heptagonal prisms enclosing the GroEL±GroES

complex have vertices and faces with integral indices obtained

by referring their coordinates to the basis of the corresponding

Z-module Mt, Mc or Ms. We recall that the common origin O is

chosen at the intersection between the trans and the cis ring of

GroEL. Some of these vertices have already been labelled.

Their indices are given below as an example. Most of them can

be read off from Figs. 1 and 2; the remainder follow from the

information contained in the appendix. The following are

found.

(i) For trans GroEL: using (1) with a = c, one obtains

�n1 n2 . . . n6; n7�t �
P6

i�1

niai �
n7

4
a7: �5�

De®ning A(n) = (�1 . . . �1, n)t and B(n) = (1 . . . 1, n)t one

obtains A = A(0), A00 = A(4) and B = B(0).

(ii) For cis GroEL: B = (1 . . . 1, 0)c, B0 = B(�4) = (1 . . . 1, �4)c,

where now

�n1 n2 . . . n6; n7�c �
P6

i�1

niai �
�Nn7

4
a7; �6�

with �N = 1.1588 . . .
(iii) For the common channel of GroEL: in a similar

way, D(4) = (2 1 1 1 1 2, 4)t, D = (2 1 1 1 1 2, 0)c, D(�4) =

(2 1 1 1 1 2, �4)c.

(iv) For the external boundary of GroES: the indices are

now de®ned with respect to the basis (as, cs) of Ms,

�n1 n2 . . . n6; n7�s �
P6

i�1

ni�Eai �
�Nn7

6
a7; �7�

with �E = 0.6920 . . . and �N as above. One then obtains



E0 � �2 0 1 1 0 2; �4�c � ��1 . . . �1; �6�s;
E � ��1 . . . �1; �9�s;
F 0 � ��2 0 �1 �1 0 �2; �6�s;
F � ��2 0 �1 �1 0 �2; �9�s: �8�

(v) For the central hole of GroES:

G0 � ��6 �1 �4 �4 �1 �6; �6�s; G � ��6 �1 �4 �4 �1 �6; �9�s:

The global analysis given so far allows the decomposition of

the quaternary structure of the GroEL±GroES complex into

molecular forms in a way which re¯ects the decomposition in

domains and in regions of the tertiary structures involved.

However, domains and regions are not the same as molecular

forms, because forms require invariance with respect to the

point group of a given Z-module, as discussed in a previous

paper (Janner, 2001a). The derivation of the molecular forms

of GroEL and GroES given in the following two sections is

inductive and not deductive. These forms are ®rst obtained as

heptagonal prisms with integral indices enclosing chain

segments. The point-group invariance of these forms is post-

poned to the appendix.

4. GroEL molecular forms

As in the case of crystals, the word form has a technical

meaning and it is not the same as shape. For crystals, a form

consists of a set of point-group-equivalent lattice planes

(BuÈ rger, 1956) and for molecules it implies a set of point-

group-equivalent Z-module planes and vertices. The two

requirements are not mutually exclusive, as can be learned

from snow crystals (Janner, 2002c). The observed enclosing

shape of GroEL±GroES is in fact composed of different forms.

From these symmetry requirements follows a Law of

Rational Indices which implies that a set of n integers (the

indices) can be assigned to the vertices of a molecular form.

These indices are nothing other than the coordinates of the

vertices expressed with respect to a basis (of rank n) of the

Z-module. If fractional indices instead of integers are found,

this may mean that the basis adopted only generates a sub-

module. As for crystals, the indices of a delimiting plane are

the coordinates of a vector normal to the face expressed with

respect to the dual Z-module (not discussed further here). A

law of rational indices is only meaningful if there is the

possibility of an experimental distinction between rational and

irrational coordinates. This is the case for relatively small

indices (or for reduced fractions of small integers) for forms

enclosing the given set of atoms reasonably well. The criterion

adopted here for `small' is integers with an absolute value not

much larger than ten. At the present level of experience, it is

dif®cult to be more precise. The best one can do is to apply the

general concepts to speci®c cases.

4.1. Forms of the trans ring of GroEL

Figs. 1 and 2 reveal two morphological properties of the

trans ring of GroEL.

(i) Trans GroEL consists of at least two different molecular

forms: one based on the regular heptagon (in the positive x

orientation), labelled A, with vertices at ak, k = 1, . . . , 6, and

the reverse one, labelled B (in the negative x orientation), with

vertices at ÿak.

(ii) The height ht of the trans ring is equal to the radius

r = |a0| = 70.3 AÊ , as already mentioned in the previous section

for GroEL±GroES±(ADP)7. In GroEL±(ATPS)14, |a0| = 71 AÊ

is a better approximation.

In the uncomplexed state of GroEL, the two regular hepta-

gons are in the only possible orientations allowed by the dyad

axis, chosen here along the x axis. One way to arrive at the

molecular forms of the trans ring is to consider the three

domains discussed by Braig et al. (1994): (i) the equatorial

domain, residues Val6±Ala133 and Glu409±Asp523, (ii) the

intermediate domain, residues Leu134±Val190 and Ala377±

Glu408, and (iii) the apical domain, residues Glu191±Val376.

All these domains have height ht/2. The equatorial domain

extends (approximately) from z = 0 to z = ht/2, the inter-

mediate domain from z = ht/4 to z = 3ht/4 and the apical

domain from z = ht/2 to z = ht. One of the two heptagons

considered above (labelled A and B, respectively) can be

taken as a basis for the heptagonal prism enclosing a corre-

sponding domain. The integral indexing of these prisms
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Figure 3
(a) N-terminal form of trans GroEL. It envelops the segments from Ala2
to Leu187 of the chains H to N (PDB code 1der; a = 70 AÊ ,  = 0). (b)
N-terminal form of cis GroEL. As in the case of the trans ring, the
segments of the chains A to G range from Ala2 to Leu187. The scaling
relation between external boundary and central hole is also the same, but
the folding is different (PDB code 1aon; a = 70.3 AÊ ,  = 8�)
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requires a Z-module with structural parameters at and ct as

chosen for Mt in (4). For the forms in question it is also

necessary to consider the heptagonal prisms of the central

holes. In order to allow integral indexing, the scale-rotation

which transforms the heptagon of the external envelope into

the one of the corresponding holes has to satisfy crystallo-

graphic conditions leading to integral invertible matrices. This

is particularly the case for the polygrammal transformations of

star heptagons, as shown in a previous paper (Janner, 2002a)

and presented again in the appendix. In the present case, holes

with good properties are indeed found, but the existence of

two different central holes in the intermediate domain is then

recognized: one (labelled C) delimited by residue Lys65 and

scaled by �C = 2cos' + 4cos2' = 0.3569 . . . with respect to

OA and one (labelled D) delimited by residue Pro525 and

scaled by �D = 0.2469 . . . as already considered in the

previous section. Both scaling factors occur in the star

heptagon {7/3}. Moreover, the two holes arise from dis-

connected segments of the protomer. These observations

suggest the consideration of forms obtained from a given

connected segment of the protomer and satisfying the

restrictions imposed by the Z-module Mt. The three forms

represented in Figs. 3(a), 4(a) and 5(a) are then obtained. A

®rst form (Fig. 3a) envelops the N-terminal segments of the

seven chains H to N of 1der (or of 1aon), ranging from resi-

dues Ala2 to Leu187. The second form (Fig. 4a) corresponds

to the apical domain and is given by the intermediate segments

ranging from residues Leu187 to Val376. Finally, the third

form (Fig. 5a) is obtained from the C-terminal segment and

ranges from residues Val376 to Lys526 (or Pro525 in 1aon).

The validity of a heptagrammal scaling connecting the

external prism to the internal one for these three forms is

indicated graphically by a star heptagon in the view along the

sevenfold axis of the corresponding ®gure and by heights at

the regular intervals required by the Z-module Mt in the

alternative perpendicular view. The labels of some repre-

sentative vertices are correspondingly the same as those given

in Figs. 1 and 2 and those already indexed in the previous

section. The planar indices of the point C (appearing in

Figs. 3a and 4a) are �1 2 0 0 2 1� and the corresponding axial

indices are 0, 2, 3 or 4 depending on the case considered. The

indices of the faces of the prisms are so simple that no special

explanation is required.

Figure 4
(a) Intermediate form of trans GroEL. The segments range from Leu187
to Val376 and correspond to the apical domain. The central hole is related
to the external boundary by a inverted {7/3} star heptagon leading to a
scaling factor �C = 0.3569 . . . (PDB code 1der). (b) Intermediate form of
cis GroEL with segments of the chains A to G ranging from Leu187 to
Val378, instead of Val376 as in the trans-ring case. The central hole is now
based on a repeated {7/2} star-heptagon construction from the B heptagon
which, however, no longer represents the lateral faces (PDB code 1aon).
The two heptagons labelled N (see Figs. 1 and 2) and M are obtained from
the B heptagon by the inverse scaling transformations S�N

and S�N
= Sÿ1

�N
,

respectively.

Figure 5
(a) C-terminal form of trans GroEL with segments from Val376 to Lys526.
The central hole is related to the external boundary by a {7/3} star
heptagon (as in Fig. 3), but now in an inverted orientation and with a
scaling factor ÿ�D = ÿ0.2469 . . . . (PDB code 1der). (b) C-terminal form
of cis GroEL with segments ranging from Val378 to Pro525. In the axial
projection this form looks the same as in the trans ring, but not in the
perpendicular projection. This re¯ects the change in the folding (PDB
code 1aon) arising from binding to GroES.



4.2. Forms of the cis ring of GroEL in GroEL±GroES±(ADP)7

Without binding to GroES, the cis ring of GroEL is simply a

dyadic image of the trans ring and therefore also of the

corresponding molecular forms. The formation of a complex

with GroES only marginally modi®es the trans ring, as already

mentioned, but has a profound in¯uence on the cis ring, which

binds GroES. In particular, the height of the cis ring is

increased by a factor �N = 1.1588 . . . and becomes twice the

height of GroES. The axial submodule is changed accordingly,

while keeping the same planar heptagonal submodule which is

shared by GroES. It is therefore probably not an accident that

�N is a scaling factor that leaves the heptagonal Z-module

invariant, as shown in the appendix.

These considerations suggest adopting the same splitting for

the cis ring as for the trans ring. This approach appears to be the correct one, despite the fact that a somewhat better ®tting

is obtained if Val378 is taken instead of Val376 as the transi-

tion between the intermediate and the C-terminal forms.

Three molecular forms are again obtained with point-group

equivalent integral indices for the faces and the vertices.

Because of the binding to GroES, these forms are similar to,

but different from, those of the trans ring (see Figs. 3b, 4b, 5b

and Table 1). The two N-terminal forms (in contact at the

plane z = 0) have correspondingly the same external (B) and

internal (C) heptagons (see Figs. 3a and 3b). The heights are

different and in the cis-ring case there are deviations from the

ideal boundary required by the axial Z-module. Most of the

indices of the vertices labelled have the planar values already

indicated above. A difference is the heptagon (labelled M)

occurring in the intermediate form. It is scaled by a factor

1/�N = �N = 2ÿ 4cos' + 2cos2'ÿ 2cos3' = 0.86293 . . . from

that labelled B (see Fig. 4b). The heptagon of the central hole

at F is scaled with respect to the point B by a factor

�2
E = (0.692 . . . )2, so that the ratio between the external M

heptagon and the internal one is �ÿ1
N �

2
E = 0.5549 . . .

Accordingly, the indices of the corresponding vertices are

M0 � M�ÿ4� � �4 1 3 3 1 4; �4�c;
M�ÿ2� � �4 1 3 3 1 4; �2�c;

F 0 � F�ÿ4� � �9 2 6 6 2 9; �4�c;
F�ÿ2� � �9 2 6 6 2 9; �2�c: �9�

5. GroES molecular forms

The co-chaperonin GroES consists of seven subunits, each

with nine �-strands. In the unliganded conformation there is a

long mobile loop forming a �-hairpin ranging from residues

Glu16 to Ala33. This segment is stabilized by GroEL and

becomes a binding loop. Another segment with the residues

from Pro56 to Phe67 forming the `roof' of the dome-shaped

GroES can also be distinguished (Hunt et al., 1996; Xu et al.,

1997). No separate domains have been considered in this

protein.

The perpendicular view of GroES given in Fig. 2 suggests a

splitting of the protomer into segments leading to forms that
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Table 1
Comparison of the molecular forms of heptameric chain segments in the
trans and the cis rings of GroEL.

By a dyadic transformation applied to the trans ring one obtains the forms of
the cis ring in the uncomplexed state.

Form Ring Segments
Lateral
con®nement

Basal
con®nement

Scaling factor
hole/ext.
boundary Fig.

N-terminal trans 2±187 B±C 0±3 ÿ0.35 . . . 3(a)
cis 2±187 B±C 0±�2 ÿ0.35 . . . 3(b)

Intermediate trans 187±376 A±C 2±4 0.35 . . . 4(a)
cis 187±378 M±F �2±�4 0.55 . . . 4(b)

C-terminal trans 376±525 B±D 0±3 ÿ0.24 . . . 5(a)
cis 378±525 B±D 0±�2 ÿ0.24 . . . 5(b)

Figure 6
N-terminal form of the co-chaperonin GroES in the complexed state
spanned by the segments of the seven chains O to U from Met1 to Ala42.
In the axial projection, the external boundary corresponds to a {7/2} star
heptagon. The central channel heptagon, labelled J, follows from the
vertex F by a {7/2} star-heptagon construction. The intermediate form of
GroES follows from the segments ranging from Ala42 to Gly62. It
corresponds to what is called the `roof' of GroES. The central hole is in an
inverted {7/3} star-polygon relation with respect to the external
heptagonal boundary.
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are a multiple of 1
3hs high, where hs is the height of GroES. This

is indeed possible by splitting each monomer into three

adjacent segments, in a similar way as for the GroEL rings.

The N-terminal segment of GroES ranges from Met1 to

Ala42 and includes the binding loop (Lys15±Thr36). It is

approximately 2
3hs high and has a central heptagonal hole

(labelled J) scaled by a factor�2
E = (0.692 . . . )2 from the vertex

E and by a factor �E = ÿ0.692 . . . from the vertex F,

respectively, of the external {7/2} star polygon (see Fig. 6). As

already pointed out, these scaling relations ®t those of the

intermediate form of the cis ring of GroEL, at the interface

where the complex binding occurs (see Fig. 4b). Indeed,

starting from the vertex at B(�4) of the GroEL form, one

obtains by successive {7/2} star-polygon constructions the

vertices labelled E(�6), F(�6) and J(�6) of the adjacent GroES

form. According to the convention adopted in (8), the indices

of these coplanar vertices are given by

B��4� � �1 1 1 1 1 1; �4�c � �1 2 1 1 2 1; �6�s;
E��6� � ��1 �1 �1 �1 �1 �1; �6�s;
F��6� � ��2 0 �1 �1 0 �2; �6�s;
J��6� � ��9 �2 �6 �6 �2 �9; �6�s �10�

and correspondingly lower vertices at E(�8), F(�8) and J(�8). The

other vertices of the N-terminal form follow from the hepta-

gonal rotational symmetry.

The intermediate form is obtained from the segments

ranging from Ala42 to Gly62. It corresponds to what is called

the `roof' of GroES. The enclosing prism of this roof is 1
3hs high

and has bases con®ned by external heptagons at F(�8) and at

F(�9) and by a central heptagonal hole at G(�8) and at G(�9). The

hole is in a reverse {7/3} relation with the external boundary

(see Fig. 6). This implies the scaling relation

G � Sÿ�D
F; �D � 0:24697 . . . �11�

The labels adopted here are those appearing in Figs. 1 and 2.

The corresponding indices have already been given.

The third form encloses the remaining C-terminal segments

(Gly62±Ala97) of the seven chains O to U of 1aon, as shown in

Fig. 7. The perpendicular view reveals that this form occupies

the region ranging from 1/3 to 2/3 of the total height hs. The

central hole appears in the axial view as a regular heptagon

(labelled I) scaled by a factor ÿ�C = ÿ0.3569 . . . with respect

to the larger heptagon E of the N-terminal form. This means

that it can be obtained from it by a {7/3} star-polygon

construction, as indicated in Fig. 7. With respect to the B

heptagon of GroEL it is scaled by a factor �C�E = �D =

0.2469 . . . , whereas the external heptagon (labelled H) is

scaled with respect to B by a factorÿ�H = 1 + 4cos' + 2cos2'
+ 4cos3' = ÿ0.55495 . . . . All these scaling transformations

leave the heptagonal Z-module Ms invariant. Summarizing,

one obtains

OH � ÿ�HOB with �H � 0:5549 . . . ;

OI � �DOB with �D � 0:2469 . . . �12�
with indexed positions

H��8� � �1 0 1 1 0 1; �8�s; I��8� � ��1 �2 0 0 �2 �1; �8�s �13�

and H(�7), I(�7) with correspondingly the same planar indices.

One can re®ne the prismatic form approximation taking

other limiting planes into account. The determination of the

indices of the faces then requires further information on the

properties of the dual Z-module M�s (in the case of GroEL

also M�t and M�c ). This goes beyond the aim of the present

contribution.

6. Discussion

The present work demonstrates the existence of molecular

forms obeying general crystallographic laws leading to vertices

with integer indices. The analysis of this fundamental property

in the particular case of the GroEL±GroES complex allows a

number of further conclusions to be drawn.

The ®rst conclusion that can be drawn from the indexed

forms of GroEL and GroES is that both co-chaperonins share

not only the sevenfold rotational symmetry but also the

associated heptagrammal scalings. This ensures a great

compatibility between GroEL and GroES despite the differ-

ence in size, as expressed by their alternative names CPN60

Figure 7
C-terminal form of GroES with segments ranging from Gly62 to Ala97. It
corresponds to the central 1/3 slice of the prism enveloping GroES. The
central hole follows by a {7/3} star-heptagon construction from the
heptagon labelled E which, however, does not represent the external
boundary. The situation is similar to the intermediate form of cis GroEL
(Fig. 4b). In both cases the external boundary is still related to the hole by
a scaling transformation that leaves the Z-module invariant.



and CPN10. In particular, the vertices of the two forms at the

GroEL±GroES binding interface have integral indices with

respect to a common symmetry-adapted basis.

The second conclusion is that the deformation of the cis ring

of GroEL induced by the binding with GroES is such that it

extends the planar compatibility pointed out above to the

axial direction. This is already apparent from the relation in

heights hc = 2hs, where hc and hs are the heights of the GroEL

cis ring and of GroES, respectively. Moreover, the forms of the

cis ring are modi®ed in such a way that their vertices also have

integral axial coordinates in the symmetry-adapted basis of

GroES. One obtains the correspondence

n7c � 0; �2; �4 !n7s � 0; �3; �6:

The third conclusion is that the segmentation of the chains of

GroEL, giving rise to the various enveloping forms, is

conserved under the polymorphic transformation induced by

the binding with GroES. This is indicated in Table 1, together

with other relations summarized without further comment.

Finally, a last remark. A chaperonin mediates the folding of

other proteins. The folding of the chaperonin itself is certainly

relevant to understanding this function. The present work

does not pretend to solve the problem, not even in part II

where folding enters explicitly into the picture (Janner, 2003a).

As in the case of crystals, the study of enclosing forms

represents a ®rst stage which allows the recognition of the

existence of structural relations justifying at the atomic level

the geometry of the form. In the second part, folding points

are analyzed which are implied by the regular forms delimiting

the volume occupied by parts of the GroEL±GroES complex.

The positions occupied by the ATP and ADT molecules in

these forms will also be considered.

APPENDIX A
A1. Heptagrammal molecular forms

Given is a Z-module M = ha1, . . . , a7i of rank 7, whose

elements are the integral linear combinations of the vectors
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Figure 8
The star heptagons {7/2} and {7/3} with vertices labelled as in the various
forms of GroEL±GroES (up to a possible inversion).

Figure 9
The planar heptagram obtained from a combination of a regular
heptagon and the two star heptagons of Fig. 8. The intersection points
have the integral indices indicated and correspond to elements of the
heptagonal Z-module, which in the planar case is of rank six.
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a1, a2, . . . , a7 de®ned as in (1) and forming the basis (a, c)

of M,

M 3 m � �n1 . . . n6; n7� �
P7

i�1

niai; ni 2 Z �15�

with n1, . . . , n7 the indices of the vector m.

An M-invariant molecular form is de®ned in three-

dimensional af®ne space (it is simply called a form). This

implies that the vertices of the form have rational indices. This

means that after the choice of the origin and with respect to

the basis (a, c) the vertices have integral coordinates.

A heptagrammal form is an M-invariant form with hepta-

gonal symmetry. The point group K of the form is generated

by linear transformations T leaving the set of vertices and the

Z-module M invariant. It means that there is a pair of vertices

U, V transformed into another by T and that with respect to

the basis (a, c) the transformation T is represented by an

invertable seven-dimensional matrix T(a, c) with integral

entries

TU � V;with T�a; c� 2 GL�7;Z� ' Aut�M� �16�

with GL(7, Z) the general linear group of the seven-

dimensional invertible integral matrices and Aut(M) the

automorphism group of the Z-module M.

For the prismatic forms considered in this work it is always

possible to choose the point-group equivalent vertices U and

V in such a way that they have the same planar indices

n1, . . . , n6 (axial case) or the same axial index n7 (planar case).

Accordingly, the form can be decomposed into the Cartesian

product of a two-dimensional heptagrammal form and a one-

dimensional vertical edge. The transformations T for these

special cases are presented in the next two subsections.

A1.1. Planar heptagrammal forms. The simplest case of a

heptagram is the regular heptagon (seven vertices), followed

by the star heptagons with SchlaÈ¯i symbols {7/2} and {7/3}

having 14 and 21 vertices, respectively (Coxeter, 1961), as

shown in Fig. 8. The next heptagram is a combination of these

three and has 42 vertices, as represented in Fig. 9, together

with an indication of the corresponding planar indices. Other

simple heptagrammal examples can be found in the axial views

of the forms given in Figs. 4(b), 6 and 7. More complex

heptagrams occur in the GroEL±GroES complex when

considering folding points at the C� positions of tertiary

structures, as discussed in part II. Here, the point groups of a

number of simple planar forms are presented.

A1.2. Regular heptagon {7/1}. The point group of the

regular heptagon is K0 = 7m, with as generators a rotation R

by an angle ' = 2�/7 and a re¯ection m,

K0 � hR;mjR7 � m2 � �Rm�2 � 1i: �17�

On the (a, c) basis these generators are represented by

R�a; c� �

0 0 0 0 0 ÿ1 0

1 0 0 0 0 ÿ1 0

0 1 0 0 0 ÿ1 0

0 0 1 0 0 ÿ1 0

0 0 0 1 0 ÿ1 0

0 0 0 0 1 ÿ1 0

0 0 0 0 0 0 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

m�a; c� �

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: �18�

This point group is also the Euclidean symmetry group of all

the (planar) heptagrammal forms considered here.

A1.3. Star heptagon {7/2}. The point group of this form is

generated by K0 and by the planar scaling transformation

Sÿ�E
, which transforms the vertices of the larger heptagon into

the corresponding vertices of the central heptagon (see Fig. 8).

The radial scaling factor is ÿ�E = 1 ÿ 2cos' + 2cos2' =

ÿ0.6920 . . . and the matrix representation is

Sÿ�E
�a; c� �

2 ÿ2 1 0 ÿ1 2 0

0 0 ÿ1 1 ÿ1 1 0

2 ÿ2 1 ÿ1 0 1 0

1 0 ÿ1 1 ÿ2 2 0

1 ÿ1 1 ÿ1 0 0 0

2 ÿ1 0 1 ÿ2 2 0

0 0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
: �19�

The point group of {7/2} is

Kf7=2g � hR;m; Sÿ�E
i: �20�

This point group is of in®nite order. As the number of vertices

in {7/2} is ®nite, K{7/2} is not its symmetry group, but only a

structural group of this heptagram. This concept is de®ned in

Janner (2001a). K{7/2} is the symmetry group of the in®nite set

of self-similar star heptagons {7/2}.

A1.4. Star heptagon {7/3}. The point group of this form is

Kf7=3g � hR;m; Sÿ�C
; S�D
i; �21�

where

Sÿ�C
�a; c� �

1 1 ÿ2 0 2 ÿ1 0

0 2 ÿ1 ÿ2 2 1 0

ÿ1 1 0 ÿ1 0 1 0

1 0 ÿ1 0 1 ÿ1 0

1 2 ÿ2 ÿ1 2 0 0

ÿ1 2 0 ÿ2 1 1 0

0 0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
; �22�



S�D
�a; c� �

ÿ2 1 0 0 0 ÿ1 0

0 ÿ1 1 0 0 ÿ1 0

ÿ1 1 ÿ1 1 0 ÿ1 0

ÿ1 0 1 ÿ1 1 ÿ1 0

ÿ1 0 0 1 ÿ1 0 0

ÿ1 0 0 0 1 ÿ2 0

0 0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
; �23�

with scaling factors given by

ÿ�C � ÿ2 cos 'ÿ 4 cos 2' � ÿ0:35689 . . . ;

�D � ÿ1� 2 cos ' � 0:24697 . . . : �24�

A1.5. Other heptagrammal forms. Indicated here are

additional scaling transformations occurring in GroEL or in

GroES molecular forms. The subscripts characterize the

scaling factors from the heptagon labelled A (or B) to that

labelled by the subscript, as already performed in the cases

discussed so far. In particular the points at M and at N of

Fig. 4(b) are related to B by the scaling transformation S�N

and its inverse S�N
= Sÿ1

�N
. The point F is scaled from B by

S�F
= S2

�E
, whereas H (see Fig. 7) is scaled from A by �H and I

from B by �C�E = �D. In this case

S�N
�a; c� �

4 ÿ3 2 0 ÿ2 3 0

0 1 ÿ1 2 ÿ2 1 0

3 ÿ3 3 ÿ1 0 1 0

1 0 ÿ1 3 ÿ3 3 0

1 ÿ2 2 ÿ1 1 0 0

3 ÿ2 0 2 ÿ3 4 0

0 0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
; �25�

S�H
�a; c� �

1 ÿ1 1 0 ÿ1 1 0

0 0 0 1 ÿ1 0 0

1 ÿ1 1 0 0 0 0

0 0 0 1 ÿ1 1 0

0 ÿ1 1 0 0 0 0

1 ÿ1 0 1 ÿ1 1 0

0 0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
; �26�

with scaling factors

�N � 2ÿ 4 cos'� 2 cos 2'ÿ 2 cos 3' � 0:862 . . . ; �27�

�H � ÿ1ÿ 4 cos 'ÿ 2 cos 2'ÿ 4 cos 3' � 0:554 . . . : �28�

A1.6. Axial heptagrammal forms. An axial form is an edge

of a heptagrammal prismatic form and has two vertices U, V

with same planar indices

U � �n1 . . . n6; n7�; V � �n1 . . . n6; n7 � k�; ni; k 2 Z:
�29�

From discussion of the planar forms it follows that the planar

indices occurring in the forms of GroEL±GroES are point-

group-equivalent to either (�1 . . . �1) or (1 . . . 1), which are the

planar indices of vertices labelled A and B = ÿA, respectively.

Let us consider the second case. (The ®rst case can be treated

in exactly the same way.) There is then a crystallographic

scale-rotation T transforming B(n7) into U; in the (a, c) basis

one has

T�a; c��1 1 1 1 1 1; n7� � �n1 . . . n6; n7�: �30�
Consider the parabolic point-group element P transforming

a1 = (1 0 . . . 0, 0) into Pa1 = a1 + a7 = (1 0 . . . 0, 1) and leaving

the other basis vectors invariant. It has the matrix repre-

sentation

P�a; c� �

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
: �31�

Then U is transformed to V by a parabolic transformation Pk
T

conjugated to Pk, the kth power of P,

Pk
TU � V with Pk

T � T PkTÿ1: �32�
One then has PkB(n7) = B(n7 + k). The parabolic transfor-

mation P is the generator of the point group of the axial form.

The union of the point groups of the planar and axial forms

generates the point group of the given prismatic form. These

considerations apply to all three Z-modules Mt, Mc and Ms

given in (4), each with its own (a, c) basis, leading to the same

matrix representation,

Pt�at; ct� � Pc�ac; cc� � Ps�as; cs� � P�a; c� �33�
with

Pc � Sÿ1
�N

PtS�N
; P6

s � S�E
P4

cSÿ1
�E
: �34�

There is a Z-module and a heptagrammal point group

common to all the molecular forms of the GroEL±GroES

complex. The existence of a common Z-module follows from

the fact that, up to rational factors, the various bases differ by

irrational factors �E and �N which are scaling factors of the

heptagrammal transformations S�E
and S�N

, respectively. The

common point group can be obtained in the same way as

above. This is interesting and probably not accidental, but

non-essential here, so that further details are omitted.

The careful reading of the ®rst manuscript by B. Souvignier

and his pertinent suggestions have greatly helped the author

to improve the presentation. Thanks are expressed to R. de

Gelder for valuable remarks and to Annalisa Fasolino for

stimulating discussions.
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